
bit l SoIitb SInIa_ Vol. II, No. 6. pp. 4590-466, 1982
PriIIted ill Oteat Britaio.

l102O-7"~.GOIO
@ 1982 Perpmon Pm. Ltd.

ON THE STABILITY OF ROTATING, AXIALLY LOADED,
HOMOGENEOUS· SHAFTS

J. WAUER

Institut fOr Teclmisebe Meclumik, Universitit Karlsruhe, Kaiserstrasse 12, D-7SOO Karlsruhe·l, Germany

(RtcidHd 27 Octolnr 1980; ill mised lonn 21 StptemlHl' 1981)

~Usingthe example of the rotating Timoshenko-beam subjected to axial pressure load with internal
and external damping a aeneral circulatory vibration system with distributed parameters is formulated, in
which sabiUty behaviour is discussed in detail.

IIIpartic:uIIr tileelectoflYrGscopicstabilization and its inftuence by the diferentdamping mechaDisms is
studied. By the means of modem operator· methods the well-known theorems of Thomson and Tait, for
instance, can be aeneralized for one-dimensional, continuous rotor systems.

l. INTRODUCTION
The equations of stability are well-known for very general rotor systems with concentrated
parameters, which can be described in the usual matrix form

Mq+(D+G)q+(K+ N)q =0, (I)

where dots denote derivatives with respect to time I, For a mechanical n-degree of freedom­
system ,(I) is an n-dimensional representation vector, M, D and K are symmetric and G and N
are antisyaunetric matrices of order n. The mass-matrix M is always positive definite. A
detailed discussion of the stability equations according to Lyapunov's theory of stability can be
found, e.g. in [1]. There it is also shown, that the stability behavior of discrete, rotationally
symmetrical, gyroscopic systems with internal and external damping is a general unsolved
problem, which can be solved only by a quantitative calculation for every individual case.
Certain necessary and sufficient conditions for stability, which exist[1, 2], can namely not be
utilized. On the other hand, by neglecting different influences in a stepwise manner, this
complex dynamic system allows the transition to simpler vibrating structures in a characteristic
way. The properties of stabDity can be then judged by global theorems and general statements,
based on modern matrix methods. For example, according to Thomson and Tait's theorems, for a
so-called M-D-G-K-system. e.g. an axially loaded rotor influenced only by a pervasive damping,
a gyroscopic stabilization of the statically unstable system (Ie <0) is impossible.

On the contrary, for elastic rotors with distributed parameters there has existed till now
neither the formUlation of an analogous general continuum model nor with exception of a paper
by Shieh[3] corresponding statements of stability, which prove stability or instability by means
of operator methods[4], without taking the usual path by a splitting into discrete parts of the
continuum[2].

This is the starting point of this paper as in [5,6J. With the aid of one-dimensional continua.
such considerations will be extended to distributed, dynamic systems, which, incidentally, is the
aim of the investigations.

2. ROTOR MODEL AND EQUATIONS OF STABILITY

It appears. that the rotating Timoshenko-beam under axial pressure load in connection with
intemal and external damping. as in Fig. 1. represents a general gyroscopic system in the above
sense.

In particular, a rod-shaped, circular, elastic solid body with the length I, which rotates in
stationary operation with a constant angular velocity llIo bas been taken into consideration. It
bas a benclina ri.lidity BI. a shearing riPlity ICGA, mass per unit length p. and a radius of
gyration k,. For the sake of simplitlcation, an parameters may be constant. The column should
be simply supported on its two ends and subjected to a conservative, time-independent
compressive load F. Because the boundary of stability reacts extremely sensitively to trace-

459



460 J. WAUEIl

~~G~ks~
x=O x=l

vlx. tl. Iplx,tl
w{x. tl. 411x,tl

Fig. 1. Rotor model.

effects, it is necessary to include damping influences. Besides the usual, external damping,
which is set proportional to the absolute vel<X:ity of the shaft-center in the form

internal damping should be considered, too. Realistically, the·relation between the stress and
strain tensors has to be modified· in· the sense of a viscoelastic .law of material, .Academically
speaking, a viscous, internal damping, which is in the form

proportional to the relative velocity of the shaft-center in a rotating coordinate system, in
analogy to the external damping, should be working here. As present investiptionsshow, this
straightforward.damping formulation is justified, because the results of both.·internal damping
mechaniSms diferoDly quantitatively.

If the smallbendina vibrations of the rotor described by the position- andtime.dependent
transverse displacements v(~, t) and w(x, t), as well as the angles of in¢lination cp(x, t)and
t/J(x, t)-all of them measured in an inertial coordinate system-, one of the well-mown principles
of mechanics yields the appertaininaboundary value problem

p,Vtt + d"vt + d/(vt + (Vow) - KGA(v,u - '1'..)+ FfJu =0,

p,Wtt + d"wt + d/(wt - CI.Iov)- KGA(w.... + I/J..)+ Fwu =0,

p,k}cptt - 2C1.1op.k,2t/1t - Elcp.... - KGA(v.. - '1') =0,

p.k,2I/Jtt + 2C1.1op.k,2cpt - EII/J,u + KGA( w.. - I/J) =0,

v(]) = w(j) =cp..(j) = t/I..(j) "" 0, j "" 0, I.

(2,1)

(2,2)

The subscripts t and x are derivatives with respect to time and position. According to
D'Alembert, all relations, eqn (2), can be vividly interpreted as equilibriums· of foreesartd
momentums.

The boundary value problem, eqn (2), may be written in the alternate f()rm[5,6]

M[qltt +(D+G)[q], + (It+ N)[q} =0, (3.1)

(3.2)

where q(x, t). is a multidimcnslollll1 representation vector in a functional space andr.t, I), G,It,
N, Mit Dp Gp It, and N, U=0,/) are suitable, titne-independcntmatrix differential operators,
For the example of a rotatina Tunoshenko-beatn, the vector q contains in thetorm

q = [v, w, 'P, '"f (4.1)
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the displacements v and w and the angles 1/1 and 1/1, while the matrices M to Nj are declared as

[i
0 0

OJ [~;~ 0 0

~]14 0 0 da+dj 0
M= 0 pJc.2 o .' D= 0 0 0

0 0 I4k$2 0 0 0

G= [~
0 0

° ]0 0 o ,
-~'0 0

0 +2010pJc.'t.

[.

(F- ICGA)('" )xx

K= 0
-KGA("')x

o

o
(F-ICGA)(''')x:r

o
KGA(· . ')x

ICGA("')x
o

-EI("·).u + ICGA
o

o 1-ICGA(.. ·)x

- EI(.. '~xx+ ICGA •

Mj=Dj=Gj

=Nj ==0,

(4.2)

The representation accon:liq to eqn (3) is entirely equiValent to the well-known description of
discrete, dyulllRic systems, as in eqn (t) and can be interpreted as equations of stability of a
aeDeraI circulatorY, distributed system.

3. INSTABILITY CONDITIONS

Practical statements of stability do DOt exist, however, so that first of aU only an evaluation
in detail is considered. For this calculation the manner of writing in operator form-eqn (3)-is
certainly of no use, so that appropriately one bas to go back to the initial eqn (2).

Upon introcIucinI the complex coordinates

z:= V + iw, x:= q> - il/l, i:::; vi -1,

as well as the dimensionless variables

and parameters

a boundary value problem

Ai+BI+ Cf+Dt+Ez=O,

(5)

(6)

(7)
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A =rs, B =2rs(6" +6;- iO),

a2

C = [1- 2irs0(26" +36/)) - [$ + r(1- Is)]~,

D= 2{(6" +8/-2rs028/)-[s(8" +8;)- irO(l- IS)]~}'

;;4 ;P
E= (1-IS)ar+(f+2is08/)~-2i08/

(8)

for the transverse displacement z alone is obtained, when the anale of inclination. X is
eliminated. Dots .above the variable z denote derivatives with respect to dimensionltss time 1'.

In order to use the classical stability theory of Lyapunov,a class of solutions, derived from
the perturbation eqn (5), which can be approximated by means of convergent modal expansions
in a series, should always be singled out. For one-dimensional continua it is possible without
restrictions. For this purpose, the transverse displacement z (~or) is separated into a function of
position and one of time in the form

(9)

Putting this into the boundary value problem, eqn (8), yields the pertinent eigenvalue problem

aZ"" + bZ" + cZ =0, Z(j) =Z"(j) =0, j =0, 1,

a =1- Is, b =- [s + r(l- la)]A 2
- 2[s(8" +8/)+irO(l- Is)]A +(f+2is08/),

c =rsA4+2rs(8" +8/- iO)A 3+[1- 2irs0(28" +38;)}A2+2(8" +8; - 2rs02c5/)A - 2;08/ (10)

for the generally complex eigenvalue A, where the dashes mark derivatives with respect to ~

The real part of the eigenvalues determines stability or instability. If only the real part of a
single eigenvalue becomes positive, the general solution z(f, or), as in eqn (9), contains terms,
which increase without limit, so thattbe aUd COl1lJ8SSionof tbe rotor as thef~ntal
state, for which stability should be investipted, becomes unstable. Of~. _rest ls.the
dependence of the eigenvalues on the loading parameter· I and sPted of rotation 0 with as
further parameters, the column-data r, s and the measures of damping 8~". When~ real part of
the eigenvalues, e.g. changes from initially negative to positive values, because the load bas
varied, there is the buckling force as a,boundary of the region of stability. On the other hand,
when the load is unchaDaed and the anauIar velocity increases, a s~criticalJiJniting~

speed of rotation is reached.
The eigenvalue problem, eqn (10), holds in the form of the factors· a,b, c evidently

position-independent coefficients, so that a rigorous· cal.etIation of· the ejpnv.tue equation is
ensured.

The exponential form

(11)

as a general solution of the ddferential equation (10), whereby the four roots Vj have to be
evaluated from the corresponding characteristic equation

(12)

gives, after fitting to the boundary conditions. eqn (10), a homogeMOUS,algebraicequation
system for the constants (Xi' As a necessary condition for non-trivial solutions the pertinent
coefficient determinant must vanish, and this,

(13)
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is exacdy the valid eiaenvalue equation, which is evaluated simultaneously with the charac­
teristic eqn (12).

Owiq to the simple boundary values, eqn (10), especially here, the eiaenform parameter III

can be determined beforehand independendy from A. F'mally, the explicit, aIpbraic equation of
condition

nA"+ 2n(8.. + 8; - iO)A3 +{(lItrf{r<I- la)+ a] + I

- 2in0(28.. + 38;)}A2 + 2{[1 + a(II1I'f](8. + 8,)

- irO(l- la)(1I1I'f- 2n028,}A +{(l- la)(1I1I')"

- 1(1111')2 - 2i08,[1 +(1I1I'fn =0, II =1,2, ...
(14)

is obtained for the four-fold infinitely many eiaenvalues A.1 to A....
The derivated eiaenvalue equation (14) of the rotating, axially loaded Timoshenko-beam

which is simply supported, corresponds to the lowest order of eiaenvalue II =I, which De
Pater[7] bas found for a discrete rotor system. Moreover, a range of special cases is included.
NeatectiDa the sheariDg deformation by a=0, e.g. leads from the Timoshenko-beam to the
model of the so-called Rayleigh-bar. If the terms of rotational inertia with reference to the
bendiDa deformations arc also suppressed, then r=0 is valid as wen, and the simplest
bar-model, Euler's column with its sufticiendy known eiaenvalue equation is the result.

Now I would like to go back again to the general eigenvalue equation (14). Mosdy, its
solutions are computed numerically, but for the study of damping influences, also by means of
the perturbation methocl[8,9]. The essential results are noted in Figs. 2-4, where, the first, the
case without dampiDa 8".. =0 should be discussed.

Because the transition to unstable solutions regulary ensues in away, that from two
previously completely diferent pure imaginary eiaenvalues of the order II a complex pair of
eiaenvalues will be produced with a coincident imaginary part and correspondinalY equally
1aqe real part, one can limit oneself to a representation of the imaainary part of the eiaenvalues
as a function of the aaauIar velocity 0 and the axial load I.

The first graph in Fig. 2 shows the variation as a function of the pressure load I for difterent
rotor speeds Ob while the second diagram illustrates the dependence of the aaauIar velocity 0
on several values of the load It- The 11th critical load can then be clearly recopized in a way,
that the imqinary part of the eigenvalues A.1 and Ad assume coincident values. When these
critical loads of the order II and especially the buckling force for II =1 are then plotted as a
funetion of the rotor speed, the gyroscopic stabilization of the undamped rotating vibration
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Fig. 2. ImaIiDarY part of the eigenvalues Aas a fllJlC.:lion of velocity 0 and !old I (II - I, 8". - 0).
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Fig. 3. Critical load It (k = 1) as a function of velocity n (8J or 8. '" 0. r '" 0.003. s '" 0.009).
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Fig. 4. Critical load It. (k = 1) as a function of velocity (~.and ~.+0, r'" 0;003. s =.0.009).

system can be seen clearly, as in Fig. 3. Thus it is found, the buckling load· increases with
angular velocity n. All statements are insignificantly modified generalizations of De Pater's
results [7] about a pressed rotor with a massless shaft and a fixed rigid disc.

Il is well-known from discrete systems, that the gyroscopic stabilization bas to be exambled
critically. According to the above mentioned theorems of Thomson and Tait it is extremely
sensitive when netdecting influences of damping. The evaluation verifies this assertion in an
impressive manner also for homoge~usshafts.

External damping cancels the tyrost:0pic stabilization again, Fig. 3, and the critical load is
independent of the anauIar velocity n and identical to the static buc.kling force.

Internal damping becomes more de.stabilizing, Fig. 3 again, and the critical load decreases
sharply with n. Above a· definite limiting~speed of. rotation even the ullloaded· Timoshenko­
beam has an unstable ~n; ane.ect, which is weD-known from classical rotor dynamics.

The influence of damping cotllequently operates in the same way as for a corresponding
single-mass-rotor, investipted by De Pater{7]. Even there, qualitatively the same phenomenons
appear, despite his remarks, which are incorrect.

If both the damping eftectsareacting-that is the. situation in practice-a gyroscopic
stabilization is possible, Fig. 4, once again, in fact, not onJy·for a discrete rotor system, not
dealt with by De Paler, bUt also for the Tunoshenko-beam, which is discussed here. There is a
specific ratio of external to internal damping, which leads to an increase in the boundary of
stability till nearly the limit of the undamped case, for a system with concentrated parameters
totally in agreement with the existing stability theory.
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... GBNERAL STABILITY THBORY

FiuJIy. it is shown that most results for distributed rotor lyRemscan be prtNlicted
qualitatiYe1, Without computation. as well. Usial a pneral· theory of stability of ..........
sional, circulatory vibration systems with distributed parameters. developed by 1C.ebIeI(5,6J on
the basis of Barston's investiptions{4l-similar considerations are derived by Tauo[10l­
pneral statements can be made. For this purpose. the real part of the eigenvalue .\ is pnerally
calculated. At this point the utility of the notation in operator form accordiDa to eqn (3)
appears. which enables a clear and compact description of the foUowina points.

A formulation

q(x. t) =Q(x) eAt (15)

of the solution q(x. t). in the same way as before for the deformation z(f. '1'). eqn (9), yields the
eigenvalue problem

[MA2+(O+G)'\ + (It+N)](Q). L[Q] =O. (16.1)

{Q(/)]T •{[MjA2 + {OJ + GJ)A +(ltJ + NJ)]tQ(J,)]} = O. j = O. 1 (16.2)

also in operator form.
Considering the inner products

(Q*T, L{Q]) =0,

(QT. L*[Q*]) =0, (17)

where superscripts* denote the complex conjugate of Q or L, first adding and then subtracting
the eqns (17) Jives

k-Re[.\]d-Im[.\]· g+(Re~A]-Im[A])'m =0,

n +1m [A)' d - Re [A]' g -2Re [A]' 1m [A]' m =0, (18)

when the boundary conditions, eqn (16.2), are used. From the eqn (18) the real part of the
eigenvalues may be found in the form

(19)

The quantities m, d, g, kand n denote characteristic functionals, which are, respectively,
actions of inertia, dampiq and l)Toscopic in8uences and, finally. conservative and circulatory
restoring forces. But also for distributed parameter systems a unique classification is possible.

By a suitable definition of the definiteness of the functionals m, d, g, k and ,. a set of
theorems can be derived, which decides stability or instability. But only for special cases of
aeneraI circulatory systems are the statements useful in real situations.

For I)TOscopic, conservative or general, noncirculatory systems, e.,. one obtains a general­
ization of Thomson and Tait's theorems. A conservative, lYfoscopic m- g - k-system, the
rotatiDa, axially loaded Timoshenko-beam without dampiq effects, e.,. can be stable even for
k <0, wbile if dampiq is to be added, a stabilization is impossible. Hence, a so-called
1ft - d - , - i-system is asymptotically stable for d, k>O. whereas it is always unstable for
d iii! 0 but k c; O. Most of the above mentioned. quantitatively calculated results bave then been
proved.

S. CONCLUDING REMARKS

The dynamic stability of distributed, mecbanical systems raises many interestina questions.
The eumple of rotatins, axially loaded. homogeneous shafts is appropriate in a characteristic
way to formulate and then to solve a stability problem of a rather seneral circulatory system
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with distributed parameters. It appears, that a great number of parallels to the corresponding
stability problem of discrete vibration systems exists. Many results can be rediscovered, even if
in modified form, and it can be supposed, that additional methods and abstractions can be
transferred advantageously.
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